
Journal of Statistical Physics, Vol. 70, Nos. 3/4, 1993

The Computational Complexity of Pattern Formation

Jonathan Machta 1

Received March 24, 1992; final June 8, 1992

The computational complexity of diffusion-limited aggregation and fluid inva-
sion in porous media is studied. The time requirements on an idealized parallel
computer for simulating the patterns formed by these models are investigated.
It is shown that these growth models are P-complete. These results provide
strong evidence that such pattern formation processes are inherently sequential
and cannot be simulated efficiently in parallel.

KEY WORDS: Pattern formation; computational complexity; DLA; fluid
invasion; parallel computers; P-completeness.

1. INTRODUCTION

Complex structures formed by a variety of equilibrium and nonequilibrium
processes have been the subject of intensive investigation in recent years.
Simple nonequilibrium growth rules such as those which define diffusion-
limited aggregation (DLA) and fluid invasion in porous media yield
complex patterns. (I) Equilibrium systems at critical points also generate
intricate patterns, the simplest example perhaps being the infinite cluster at
the percolation threshold. Efforts to characterize these patterns have
focused mainly on their self-similar properties: critical exponents, fractal
dimensions, and multifractal analyses. Here we examine pattern formation
from the standpoint of computational complexity. More specifically, we
shall ask the following question: How long will it take to generate a pattern
of a given size on a parallel computer ?

The motivations for investigating the parallel computational com-
plexity of pattern formation are both practical and theoretical. With the
increasing availability of parallel computers it is important to classify the

Department of Physics and Astronomy, University of Massachusetts, Amherst,
Massachusetts 01003.

949

0022-4715/93/0200-094950%00/0 �9 1993 Plenum Publishing Corporation

950 Machta

problems of statistical physics according to whether they admit efficient
parallelization.-" For example, efficient algorithms for identifying percola-
tion and Ising clusters are currently under study (2) as part of an effort to
implement Monte Carlo simulations on parallel computers such as the
Connection Machine TM.

More fundamentally, we would like to understand how to characterize
the physical complexity of pattern formation models. Bennett (3) identified
an appealing criterion, the "slow growth law," which any suitable measure
of complexity should satisfy. A physical system is considered complex if its
states could not plausibly have arisen quickly. To formalize this notion,
one must be able to simulate the system on a computer and measure the
time required to reach typical states of the system. The time required by an
optimal algorithm (referred to as "logical depth" in ref. 3) is then the
measure of the complexity of the system. Since the physical world evolves
in parallel, it seems appropriate to measure time on a parallel computer.
Another argument for using parallel time arises from requiring that com-
plexity be an intensive quantity. Simulating two independent, statistically
similar systems on a sequential machine requires twice as much time as
simulating a single system, whereas on a parallel computer with sufficiently
many processors the time is nearly the same.

Growth models (1) such as DLA, fluid invasion, growing percolation,
and invasion percolation generate patterns via a step-by-step process. As
defined, these models are naturally implemented on sequential computers.
For a system of size N they require polynomial time, O(N k) for some k, to
reach their final states. The pattern forming process seems to be history
dependent and would appear to satisfy a slow growth law. On the other
hand, it may be that a DLA pattern or percolation cluster could be
generated by a cleverly designed parallel algorithm that runs in polylog
time, O(log ~ N) for some k, using only a polynomial number of processors.
The main result of the present paper is that DLA is inherently sequential
and there is almost certainly no parallel algorithm which can generate the
resulting patterns in polylog time. By contrast, percolation clusters can
be generated in polylog time using the parallel algorithm for connected
components of a graph. (4)

There is a well-developed theory of parallel time complexity in the
computer science literature. (4-6) Within this theory, the idea that a problem
is inherently sequential and cannot be solved on an idealized parallel
computer in polylog time is formalized by the concept of P-completeness.

2 By "efficient" we mean a parallelization in which many processors significantly speed up the
construct ion of a single realization of a system. We do not consider the simple approach in
which each processor works on a different realization of a system.

The Computational Complexity of Pattern Formation 951

More precisely, then, the central result of this paper is that decision
problems based on DLA and fluid invasion are P-complete.

We close this section with a brief overview of previous research
connecting statistical physics and computational complexity. Substantial
progress has been made in understanding the computational complexity
of various problems in classical equilibrium statistical mechanics. (~'8)
Computing the partition function of the Ising model on a general graph is
#P-complete (the enumeration counterpart of NP-complete(9)), which
strongly suggests that it cannot be done in polynomial time. On the other
hand, provably good polynomial time approximations can be obtained
using Monte Carlo methods. (7~ Finding the ground-state energies for spin
glasses in more than two dimensions (1~ and for self-avoiding walks on
random lattices in more than one dimension (1I) are NP-complete problems.
On the other hand, the ground-state energy of the directed self-avoiding
walk ~12~ and the random-field Ising model (~3) are polynomial time
problems. The present paper is the first to consider nonequilibrium pattern
formation problems from the standpoint of computational complexity.

Cellular automata models have been extensively studied from the
standpoint of simulating physical systems in parallel. (14~ Because they are
spatially extended and locally connected, cellular automata are attractive
models of computation from the standpoint of statistical physics and have
been proposed as the proper context for defining physical complexity as
logical depth. (3) Some cellular automata rules (e.g., the game of life) can
carry out universal computations, which implies that simulating these
cellular automata are P-complete problems. (6~ Cellular automata of fixed
dimensionality are weaker than the idealized parallel computers, called
P-RAMs, invoked in parallel complexity theory. Any problem which
involves the interaction of M data bits will require time O (M TM) on a

d-dimensional cellular automaton because of the time taken to propagate
information across the system, whereas many such problems can be solved
in polylog time on a P-RAM. On the other hand, the conventional defini-
tion of "time" for P-RAMs is unphysical because no allowance is made for
the time required for signals to propagate between processors and memory
locations.

The paper is organized as follows. Section 2 is an introduction to the
theory of parallel computational complexity and P-completeness. The fluid
invasion model is defined in Section 3, and in Section 4 a decision problem
based on this model is proved to be P-complete. In Section 5 and an
accompanying appendix, a restricted version of the model isomorphic to
DLA is shown to be P-complete. The paper closes with a discussion.

952 Machta

2. INTRODUCTION TO THE THEORY OF PARALLEL
COM PUTATIONAL COM PLEXITY

In the theory of parallel computational complexity (4-6) there are two
main classes of decision problems: P and NC. Informal descriptions of
these classes are provided in what follows. P is the class of problems that
can be solved in polynomial time on a sequential computer such as a
Turing machine or random access machine (RAM). NC is the subset of P
consisting of problems solvable in polylog time on a parallel computer with
a number of processors that grows as a polynomial in the problem size.
The restriction to a polynomial number of processors is required since any
problem can be solved in polylog time given exponentially many
processors. In any case, exponentially many processors is infeasible except
for very small problem sizes.

P-complete problems are those problems in P which are hardest to
solve in parallel. The notion of P-completeness is formalized by considering
reductions from one problem to another. Roughly speaking, problem R is
NC-reducible to problem S, written R ~< S, if there exists a parallel algo-
rithm for R which is allowed to look up solutions to S and solves R in
polylog time with polynomially many processors. Thus, if S e NC and
R ~< S, then R e NC. A problem S is P-complete if S ~ P and if for all R ~ P,
R <~ S. Note that if any P-complete problem is in NC, then P = NC.

The identification of a first P-complete problem requires proving that
a reduction exists from every problem in P to the given problem. Once a
collection of P-complete problems is available, an additional problem R
can be shown to be P-complete by the simpler procedure of proving that
S ~< R where S is already known to be P-complete.

The canonical P-complete problem is the CIRCUIT VALUE
PROBLEM (CVP). The problem is to compute the truth value of a
Boolean expression on a given set of inputs. A topologically ordered
Boolean circuit of size M is a sequence, B = (B~ BM). For each i, Bi is
either TRUE, FALSE, or a Boolean statement of the form B;--- (Bi~ v Bi2),
B~=(B~ ^ Bi:), or Bi= ~Bg~, where i~,i2<i. An instance of CVP is a
topologically ordered Boolean circuit. The solution of CVP is the truth
value of BM. Ladner showed that CVP is P-complete3 4" 15) The proofs
presented in Sections 4 and 5 consist of reductions from variants of CVP
to the fluid invasion problem.

All P-complete problems are equally difficult in the sense that if one
could be solved in polylog time, then all problems in P could be solved in
potytog time and P would equal NC. It is strongly believed, however, that
NC #P , which implies that no P-complete problem can be solved in
polylog time with polynomially many processors. At present, there is no

The Computational Complexity of Pattern Formation 953

proof that NC r P and the strongest evidence in favor of this conjecture is
the absence of a fast parallel algorithm for any P-complete problem. The
P-completeness results obtained here for fluid invasion and DLA are
thus strongly suggestive that these pattern formation processes require
polynomial time on any parallel computer.

The situation is analogous to the more familiar theory of NP-
completeness. (9) NP-complete problems are the hardest problems in NP
and are widely believed to require exponential time to solve. If NP ~ P,
then no NP-complete problem can be solved in polynomial time. Although
there is strong evidence to suggest that NP :/: P, no proof has been found.
Settling either of the conjectures, P ~ NC or P ~ NP, would constitute a
major breakthrough in computer science, but is likely to be exceedingly
difficult.

In this paragraph several technical issues are briefly discussed. First,
there are a variety of models of parallel computation. The idealized model
envisioned in the theory of P-completeness has many processors working
synchronously, each connected to a central controller and a shared random
access memory. This is the P-RAM model of computation. In defining time
on a P-RAM it is supposed that memory access can be accomplished in a
number of clock cycles that is independent of the number of processors or
memory locations. Variants of the model which resolve read and write
conflicts between processors in different ways (4~ are not relevant to defining
NC and P-completeness. Second, the notion of reducibility can be
defined (5~ in a variety of ways and NC-reducibility is often replaced by the
notion of log-space reducibility. Again, these distinctions are not central to
the present discussion. Finally, complexity classes are defined for decision
problems, e.g., problems that have yes or no answers. Our interest is to find
the patterns formed by growth models, but this task can be posed as N
decision problems corresponding to whether the N sites of the lattice are
occupied or not by the invading fluid or DLA cluster. If the decision
problem for an arbitrary site could be shown to be in NC, the whole
pattern could be obtained in polylog time by increasing the number of
processors by a factor of N and solving the decision problems for all lattice
sites in parallel.

3. T H E FLUID I N V A S I O N M O D E L

The general growth model considered here is abstracted from the
physics of fluid invasion in porous materials in the limit of large flow
speed where surface tension can be neglected. The physical setting is a
porous material filled with a viscous fluid such as oil. A much less viscous

954 Machta

fluid such as air is injected into the system at a source and pushes the
more viscous fluid out of the porous material through a sink until a path
of the invading fluid connects the source and sink. If there is little or no
randomness in the porous material, then the invading fluid develops
viscous fingers. If the randomness is stronger, fractal patterns resembling
DLA clusters develop. (16) As a first step in understanding this problem
from the point of view of computational complexity, we consider a more
general situation where the fluid flows on an arbitrary graph. Following
Chan et aL, O7) we lump the local permeabilities of the material into edge
conductances and the local porosities into vertex capacities.

Consider then the following general pattern formation problem, which
we call FLUID INVASION:

INSTANCE. A graph G(V, E). Nonnegative real "conductances" K o
are assigned to each edge {i, j} s E and nonnegative real "capacities" ~i are
assigned to each vertex i s V. There are two distinguished vertices s and s'
which serve as a source and sink, respectively.

PROBLEM. Find the set of vertices C* filled by the invading fluid
according to the fluid invasion model, defined as follows(18):

As a function of time t, the volume of viscous fluid at each vertex is
ai(t) and the pressure at each vertex is pi(t). At every time the set of
vertices is divided into three disjoint subsets,

C(t)= {ie V] ~z,(t) =0}

3C(t)= {is V] i r and 3 jeC(t) { i , j } 6 E }

F(t) = V - C(t) - OC(t)

(1)

C(t) is the cluster of pores already completely filled with the invading fluid
at time t. OC(t) is the perimeter, consisting of sites which still contain the
viscous fluid but which are adjacent to pores filled with the invading fluid.
F(t) is the collection of pores still completely filled with viscous fluid and
not adjacent to a member of the cluster. The pressure in the invading fluid
is unity and the pressure is zero at the sink. The pressure in the viscous
fluid satisfies a discrete, inhomogeneous Laplace equation,

iE C(t) u OC(t) -~ p~(t) = 1

p,,(t) =0

i~ F(t) --* P~(t)= ~ P J (t) K ~ Kj~

(2)

The Computational Complexity of Pattern Formation 955

The evolution of the fluid configuration is governed by Darcy's law,

(r i (t) = - ~ K o. [p;(t) - p j (t)] (3)
J

with initial condition that the cluster is the source vertex and every other
vertex is filled with the viscous fluid,

C(0)= {s} and for all i c E - { s } , a;(0)=q~i (4)

The cluster grows until there is a path from s to s', i.e., s ' s 0C. The
completed cluster is denoted as C*. The growth of the cluster can be
simulated by an iterative algorithm with discrete time steps:

FLUID INVASION ALGORITHM. Suppose that some vertex i,
has just joined the cluster at time t, [i.e., crio(t,)=0 but ~io(t)> 0 for
t < t,]. The pressures are computed at each vertex in F (t ,) by solving the
set of linear equations (2). The emptying rate ~';(t,) of each perimeter
vertex is obtained from (3) and at time t ,+l the next vertex i,+ ~ joins the
cluster, where t,+1 and i,+~ are obtained from

t , + l = t , + min {~ri(t ,) /(r~(t ,)} (5)
i ~ OC(tn)

The remaining perimeter site capacities are updated using (3) and the
neighbors of i,+1 are added to the perimeter. The procedure is initialized
by Eq. (4) and is iterated until s '~ OC.

The fluid invasion model can also be interpreted as an electrical
breakdown model. In this picture, the graph is an electrical network and
K o. represent bond conductances before breakdown. A perimeter site j
breaks down when the net charge flowing into it directly from the cluster
exceeds ~bj. After breaking down, the conductances to adjacent sites in the
cluster become infinite.

4. C O M P U T A T I O N A L COMPLEXITY OF FLUID INVASION

In this section we show that the FLUID INVASION is P-complete by
exhibiting a reduction from the CIRCUIT VALUE PROBLEM. It is
straightforward to see that CVP is P-complete when the only gate type
allowed is NOR, Bi = "~ (B; l v B/2), and the circuit is topologically ordered.
This version of CVP is called NOR CVP and is used in the following proof.

Theorem 1. FLUID INVASION is P-complete.

Proo f . It is clear that FLUID INVASION is in P. The steps in the
fluid invasion algorithm must be iterated at most N times, where N is the

956 Machta

size of the graph. At each iteration the most complex step is the inversion
of an N x N matrix to compute the pressure field according to (2).

NOR CVP is reduced to FLUID INVASION by the following con-
struction. The idea is to show that an evaluation of a Boolean expression
can be simulated by the growing cluster of a specially prepared instance of
FLUID INVASION. Each NOR gate Bk is represented by a linear path
from s to s' consisting of four vertices and five edges as shown in Fig. 1.
The vertex y(k) adjacent to s represents the output of gate k. The vertices
a(k) and b(k) function as time delays. The third vertex x(k) represents the
conjunction of the inputs of gate k. The connections between gates are
represented by edges. The input TRUE is represented by an edge from s to
the input vertex x(k), while the absence of such an edge represents FALSE.
The output vertex of the last gate y(M) is connected directly to the sink s'.
An instance of NOR CVP and its equivalent FLUID INVASION graph
are shown in Fig. 2. Each output vertex is assigned a capacity equal to the
number of the gate it represents, Cy(k)= k. All input vertices are assigned
small capacities, Cx(k)= 1/MS. All of the time delay vertices are assigned
large capacities, ffa(k)= ~b(k)-----M2. The five edges within a gate each has
conductance four, e.g., K~,a(k)= 4. The edges which connect gates to one
another and to the source and sink are assigned a small conductance,
1/M 3.

The following lemma shows how the pattern formed by the above
network simulates the instance of NOR CVP.

S'

y(k)

) x(k)

p a(k),

S

Fig. 1. The subgraph representing NOR gate k. Here x(k) (open circle) is the input vertex
and y(k) the output vertex, a(k) and b(k) serve as time delays. Each edge along the path from
s to s' has conductance 4.

The Computational Complexity of Pattern Formation 957

(a) B I = F

B2= F

B3= T - - ~

B4=F

(b)

B 5

Fig. 2. (a) A Boolean circuit with four inputs and three NOR gates. (b) The corresponding
FLUID INVASION graph. The bold lines represent edges with large conductance and the
light curved lines represent small-conductance edges which represent connections between the
gates. The inputs of vertices Bs, B~, and t77 a r e represented by open circles and have small
capacities.

L e m m a . y(k) ~ C* if and only if Bk = TRUE.

Proof. Consider a given gate k. Since y(k) is initially part of the
perimeter 3C, it begins to empty. While the input x(k) is not part of C or
3C, then the mos t important flow path by which y(k) empties is the linear
path through gate k that has a total conductance of one. Thus
5y(k~=- 1--O(1/M), where the small correction is due to the parallel
paths from y(k) to the sink through other gates. Thus if the input x(k) does
not join the cluster first, then y(k) will join C at time approximately k. On
the other hand, suppose that x(k) joins the cluster before time k. Then the

822/70/3-4-29

958 Machta

path by which y(k) empties is via the low-conductance connections to gates
with higher indices. Since there are less than M of these, the rate at which
y(k) empties is now O(1/M2). Thus y(k) cannot empty before a time M 2
which is always longer than the time for the cluster to reach completion,
so that y(k) ~ C*.

To summarize, if x(k) is in the cluster, then y(k) will not join the
cluster, but if x(k) has not joined the cluster before time k, then y(k) will
join the duster approximately at time k. The gate carries out the Boolean
function of negation if y(k) ~ C* is interpreted as TRUE.

Next consider the effect of the state of gate k on gate m, where k and
m are connected and m > k. First suppose that Bk has the value TRUE so
that y(k) becomes a member of C at time k. Then the input x(m) becomes
a perimeter vertex and, due to its small capacity, joins the cluster after a
time less than O(1/M). Thus, if either of the inputs to gate m registers
TRUE before time m, then x(m) joins the cluster shortly thereafter and
y(m) r C*. On the other hand, if both inputs to gate m are FALSE, then
x(m) is not part of the perimeter and y(m)joins the duster approximately
at time m. By time m, gate m has computed the Boolean function NOR.

It is easy to check that the time delay vertices a(k) and b(k) ensure
that gate k remains in the same logical state until time O(M 2) when the
cluster is completed. This completes the proof of the lemma. |

Since the construction of the required graph for FLUID INVASION
is locally defined and requires less than 4M vertices, it is easy to see that
the reduction is in NC. |

5. DLA IN T W O D I M E N S I O N S

Diffusion-limited aggregation (19> (DLA) is one of the most widely
studied pattern formation models. In DLA the cluster grows by accretion
starting from an initial "seed." Successive particles start at a source and
random walk until they reach the growing duster, where they stick. A new
particle begins its random walk as soon as the previous particle is
incorporated into the cluster. The cluster grows until it reaches the source
or a predetermined size.

DLA dusters grow by stochastic dynamics on a uniform lattice,
whereas the fluid invasion model is governed by deterministic dynamics on
a random lattice. However, Chart eta/. (17) and Koza (18~ have shown that
the measure associated with DLA clusters is the same as the measure
associated with the fluid invasion model with a particular distribution for
the quenched randomness. The fluid invasion model yields the DLA
measure if the edge conductances are all the same and the vertex capacities

The Computational Complexity of Pattern Formation 959

are independent, identically distributed random variables chosen from
an exponential distribution. The source and sink vertices in FLUID
INVASION correspond respectively to the seed and the source for DLA.

Thus, in order to investigate the computational complexity of DLA we
must consider a restricted version of FLUID INVASION in which the
conductances are all equal. The most interesting model from a physical
standpoint is defined on a Euclidean lattice. The restriction to a Euclidean
lattice with equal conductances makes the proof of P-completeness
considerably more difficult.

Theorem 2. Let G(V, E) be an L• two-dimensional square
lattice together with sites s and s'. Let s be connected to all the sites on one
face of the lattice and let s' be connected to all the sites on the opposite
face. Let all of the bond conductances equal unity. FLUID INVASION
with these restrictions is P-complete.

Proof Sketch. The proof is similar to that of Theorem 1 except that
the reduction is from a restricted version of CVP in which the circuit is
planar and consists only of NOT and OR gates. Goldschlager (2~ proved
this version of CVP P-complete. For the restricted problem, the circuit can
be laid out in levels with connections only between adjacent levels.

The simulation of the Boolean circuit is again via the sequence of sites
added to the growing cluster. The basic ingredient out of which the circuit
components are built is a "wire" which is a connected sequence of sites
having very small capacities in a background of sites having very large
capacities. An example of a single wire on a 5 • 5 lattice is shown in Fig. 3,
with the small-capacity sites shown as open circles and the background of
large-capacity sites shown as filled circles. In this example, the growing
cluster quickly follows the wire from s to its termination, but then no
growth occurs for a very long time.

The physical mechanism which permits the simulation of Boolean
functions is screening. This mechanism is illustrated by the simple NOT
gate shown in Fig. 4. This gate is composed of an input wire X, an output
wire IT, a power-in wire P, and a single site x, represented by a filled circle.
Site x has a capacity of order unity (much larger than the wire capacities
and much smaller than the insulator capacities). The cluster grows from the
bottom of the diagram. The background of large-capacity, "insulating" sites
(not shown explicitly) prevents the cluster from growing except along the
wires. The gate is activated by the arrival of the cluster along the power-in
wire, which is timed so that the input arrives before the gate is activated.
Inputs and outputs are interpreted as TRUE if they are part of the
completed cluster.

960 Machta

$q

$

Fig. 3. A 5 x 5 lattice with a wire of connected very small-capacity sites (represented by open
circles) in a background of very-large capacity sites (represented by solid circles). The cluster
quickly grows along the wire, but then does not change for a very long time.

Y

X

w

I
X

Fig. 4. A simple NOT gate. Wires composed of very-small capacity sites are indicated by
bold lines. The background of very large-capacity sites is not shown, but all wires are
insulated from one another by these sites. X is the input wire, P the power-in wire, and Y the
output wire. The growth of the cluster is from the bottom to the top of the page.

The Computational Complexity of Pattern Formation 961

Suppose the input to a NOT gate is FALSE. In this case, when the
cluster grows along the power-in wire P, it pauses for a time of order unity
at x and then progresses along the output wire Y, which then registers
TRUE. Next suppose that the input is TRUE; in this case, the cluster
creates a "fjord" of pressure 1 sites around the site x which screen this site.
Consider what happens when the gate is activated by the arrival of the
cluster at x along the wire P. In order for x to join the cluster, a flux of
order unity must flow out of x along the length of the tjord; however,
the pressure gradient along the fjord is very small. Thus, the cluster is
effectively terminated at x and the output wire Y registers FALSE.

A quantitative discussion of the screening effect is given in the
Appendix, where it is seen that the current out of x decreases exponentially
with the length of the fjord. Thus, to construct a NOT gate which is stable
for a time T requires a fjord whose length scales as log(T).

The NOT gate described above is the basic building block of the
required fluid invasion device. In order to wire together the full circuit it is
necessary to ensure that all wires are laid out on the plane without
crossings and that the input signals arrive prior to the power signal at
every gate. A more elaborate NOT gate meeting these requirements is
shown in Fig. 5a. Note that there is now an additional power-out wire P',
which activates the next gate in the network. The sites b, c, d, and e are
needed to control the timing of the gates. The path of the cluster growth
in the NOT gate for inputs TRUE and FALSE are shown, respectively, in
Figs. 5b and 5c. Note that the extra fjords to the left of the simple NOT
circuit ensure that there is no back growth of the cluster to the output
wire Y.

The time delays are set up so that the input signal to the n th gate of
level m arrives at time approximately n + m z and the power signal arrives
roughly at time n + mr + 6. The time delays of sites b, x, e, d, and e are
chosen to be n, 1/2, r - 6 - n - 1/2, 3 + 1, and 1/2, respectively. The input
arrives at time mT, the power-in at time mr + n + 6, and the power-out
emerges at time mr + n + 6 + 1 and the output emerges at time (m + 1)r.
Small errors in time delays will not lead to fatal errors in the computation
of the circuit value; however, a full proof would require showing that
computing the site capacities needed to produce the above time delays with
sufficient accuracy could be done locally and in polylog time. A crucial
observation here is that the current flows in a given gate are perturbed
by the status of other gates by an amount which falls off as the inverse
distance to other gates, so that by increasing the separation between gates
polynomially it is possible to achieve effective independence between the
timing in each gate.

NOR and OR gates are easily made from the above NOT gate.

(a) v

I

(b)

p,

c x

FALSE

b

X

TRUE

(c) TRUE

FALSE

Fig. 5. (a) NOT gate. A" is the input, Y the output, P the power-in, and P' the power-out
wires. (b) Cluster configuration after activation of the gate with TRUE input. (c) Cluster
configuration after activation of the gate if the input is FALSE. Sites in the cluster are joined
by bold lines in (b) and (c).

The Computational Complexity o f P a t t e r n Formation

t
s

I

963

A

f .
v v

S

Fig. 6. The large-scale layout of a Boolean circuit as a two-dimensional F L U I D INVASION.
problem. The bold lines indicate wires and the filled circles either OR or N O T gates (see
Fig. 5 for details). The power wire, shown as straight, laces back and forth between gates at
successive levels. The connections between gates at successive levels are shown as curved wires.

Joining two wires before they enter a NOT gate produces a NOR gate.
Placing a simple NOT gate at the output of a NOR gate with power
supplied by a tap from the main power wire produces an OR gate.

The overall structure of the circuit is shown in Fig. 6. Power wires
(shown as straight) loop back and forth transversely across each level in
the circuit, while wires carrying truth values (shown as curved) connect
gates on adjacent levels. TRUE inputs required in level m are obtained
from the power wire at level m - 1. The large scale layout of the circuit is
similar to the construction required in the proof that the lexicographically
first ordered maximal path problem is P-complete. (21)

We have shown that the devices required to emulate NOT and OR
gates perform correctly. The layout of the circuit can be carried out locally
on a lattice whose size scales as a power of the size of the original Boolean
circuit. Thus we have exhibited an NC-reduction from the planar, layered
CIRCUIT VALUE problem to the two-dimensional FLUID INVASION
problem with constant conductances. |

964 Machta

6. D ISCUSSION.

What is the meaning of the result that FLUID INVASION and
DLA are P-complete? Suppose, as is widely believed, that NC :~ P; then
Theorems 1 and 2 imply the existence of instances of FLUID INVASION
which cannot be solved by any parallel computer in polylog time using a
polynomial number of processors. Nonetheless, it is possible that some or
even most instances could be solved in fast parallel time. Thus it is also
important to characterize the typical or average parallel time to solve a
problem. This kind of question can be posed in a natural way within
statistical physics since problem instances are equipped with measures. For
example, it would be interesting to determine the average case complexity
of FLUID INVASION equipped with the DLA measure (i.e., the site
capacities are independent, identically distributed variables chosen from an
exponential distribution). While a theory of average case complexity for
NP problems is reasonably well developed, ~22'23) an equivalent theory of
average case parallel complexity is not yet available.

This paper represents a first effort to bring to bear the theory of com-
putational complexity to problems in nonequilibrium statistical physics.
Understanding the computational complexity of problems in statistical
physics has practical significance for numerical simulations and may also
yield fundamental insights into the nature of complex physical systems.

A P P E N D I X

In this appendix we show that the current flowing out of a site at the
end of a fjord diminishes exponentially in the length of the fjord. The
equivalent circuit modeling a fjord of length N is shown in Fig. 7. All
resistors have the value unity. In order to analyze this circuit, let x s be the
voltage at site j in the fiord. The node voltage equations (2) take the form

x j = (2 + x j _ l + x j+l) /4 (A.1)

with boundary conditions x0 = I and XN = O. The general solution to (A.1)
is

xj = ae +;j + be-hi + c (A.2)

Plugging this solution into (A.1) and equating terms which behave as e -zj
and e +;J yields c = 1 and 2 = c o s h - 1 (2) = 1.317. Invoking the boundary
conditions, one obtains the specific solution

sinh(2j)
x j= 1 sinh(2N) (A.3)

The Computational Complexity of Pattern Formation 965

Fig. 7. Equivalent circuit representing a t~ord of depth N. All resistors have unit value and
the voltage drop across the battery is unity.

Thus, the current J flowing out of site 0 is, from (3),

sinh(2)
J - sinh(2N)

which behaves as J , , ~ e -;'N for large N.

(A.4)

A C K N O W L E D G M ENTS

I am grateful to Ray Greenlaw for helpful discussions and numerous
useful comments on the manuscript. I thank David Barrington, Neil
Immerman, and Charles Bennett for helpful discussions. This work was
supported in part by NSF grant D M R 9014366.

966 Machta

R E F E R E N C E S

1. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).
2. J. Apostolakis, P. Coddington, and E. Marinari, Europhys. Lett. 17:189 (1992); R. C.

Brower, P. Tamayo, and B. York, J. Stat. Phys. 63:73 (1991).
3. C. H. Bennett, in Complexity, Entropy, and the Physics oflnformation, Wojciech H. Zurek,

ed. (Addison-Wesley, 1990).
4. A. Gibbons and W. Rytter, Efficient Parallel Algorilhms (Cambridge University Press,

Cambridge, 1988).
5. S. A. Cook, Information Control 64:2 (1985).
6. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, A Compendium of Problems Complete for

P, Department of Computer Science, University of New Hampshire, Technical Report TR
91-14 (1991).

7. M. Jerrum and A. Sinclair, SlAM J. Computing, to appear.
8. R. Ladner, SIGACT News 7:18 (1975).
9. M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman, San Francisco,

1979).
10. F. Barahona, J'. Phys. A: Math. Gen. 15:3241 (1982).
11. J. Machta, J. Phys. A: Math. Gen. 25:521 (1992).
12. D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54:2708 (1985).
13. F. Barahona, J. Phys. A: Math. Gen. 18:L673 (1985).
14. S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore,

1986).
15. D. J. A. Welsh, in Disorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds.

(Oxford University Press, Oxford, 1990).
16. J.-D. Chen and D. Wilkinson, Phys. Rev. Lett. 55:1892 (1985).
17. D. Y. C. Chan, B. D. Hughes, L. Paterson, and C. Sirakoff, Phys. Rev. A 38:4106 (1988).
18. Z. Koza, J. Phys. A: Math. Gen. 24:4895 (1991).
19. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47:1400 (1981).
20. L. Goldschlager, SIGACT News 9:25 (1977).
21. R. Anderson and E. Mayr, Information Process. Lett. 24:121 (1987).
22. L. A. Levin, SlAM ,I. Comput. 15:285 (1986).
23. Y. Gurevich, J'. Computer Syst. Sci. 42:346 (1991), and references therein.

