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The computational complexity of diffusion-limited aggregation and fluid inva- 
sion in porous media is studied. The time requirements on an idealized parallel 
computer for simulating the patterns formed by these models are investigated. 
It is shown that these growth models are P-complete. These results provide 
strong evidence that such pattern formation processes are inherently sequential 
and cannot be simulated efficiently in parallel. 
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1. INTRODUCTION 

Complex structures formed by a variety of equilibrium and nonequilibrium 
processes have been the subject of intensive investigation in recent years. 
Simple nonequilibrium growth rules such as those which define diffusion- 
limited aggregation (DLA) and fluid invasion in porous media yield 
complex patterns. (I) Equilibrium systems at critical points also generate 
intricate patterns, the simplest example perhaps being the infinite cluster at 
the percolation threshold. Efforts to characterize these patterns have 
focused mainly on their self-similar properties: critical exponents, fractal 
dimensions, and multifractal analyses. Here we examine pattern formation 
from the standpoint of computational complexity. More specifically, we 
shall ask the following question: How long will it take to generate a pattern 
of a given size on a parallel computer ? 

The motivations for investigating the parallel computational com- 
plexity of pattern formation are both practical and theoretical. With the 
increasing availability of parallel computers it is important to classify the 

Department of Physics and Astronomy, University of Massachusetts, Amherst, 
Massachusetts 01003. 

949 

0022-4715/93/0200-094950%00/0 �9 1993 Plenum Publishing Corporation 



950 Machta 

problems of statistical physics according to whether they admit efficient 
parallelization.-" For example, efficient algorithms for identifying percola- 
tion and Ising clusters are currently under study (2) as part of an effort to 
implement Monte Carlo simulations on parallel computers such as the 
Connection Machine TM. 

More fundamentally, we would like to understand how to characterize 
the physical complexity of pattern formation models. Bennett (3) identified 
an appealing criterion, the "slow growth law," which any suitable measure 
of complexity should satisfy. A physical system is considered complex if its 
states could not plausibly have arisen quickly. To formalize this notion, 
one must be able to simulate the system on a computer and measure the 
time required to reach typical states of the system. The time required by an 
optimal algorithm (referred to as "logical depth" in ref. 3) is then the 
measure of the complexity of the system. Since the physical world evolves 
in parallel, it seems appropriate to measure time on a parallel computer. 
Another argument for using parallel time arises from requiring that com- 
plexity be an intensive quantity. Simulating two independent, statistically 
similar systems on a sequential machine requires twice as much time as 
simulating a single system, whereas on a parallel computer with sufficiently 
many processors the time is nearly the same. 

Growth models (1) such as DLA, fluid invasion, growing percolation, 
and invasion percolation generate patterns via a step-by-step process. As 
defined, these models are naturally implemented on sequential computers. 
For a system of size N they require polynomial time, O(N k) for some k, to 
reach their final states. The pattern forming process seems to be history 
dependent and would appear to satisfy a slow growth law. On the other 
hand, it may be that a DLA pattern or percolation cluster could be 
generated by a cleverly designed parallel algorithm that runs in polylog 
time, O(log ~ N) for some k, using only a polynomial number of processors. 
The main result of the present paper is that DLA is inherently sequential 
and there is almost certainly no parallel algorithm which can generate the 
resulting patterns in polylog time. By contrast, percolation clusters can 
be generated in polylog time using the parallel algorithm for connected 
components of a graph. (4) 

There is a well-developed theory of parallel time complexity in the 
computer science literature. (4-6) Within this theory, the idea that a problem 
is inherently sequential and cannot be solved on an idealized parallel 
computer in polylog time is formalized by the concept of P-completeness. 

2 By "efficient" we mean a parallelization in which many  processors significantly speed up the 
construct ion of a single realization of a system. We do not  consider the simple approach in 
which each processor works on a different realization of a system. 
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More precisely, then, the central result of this paper is that decision 
problems based on DLA and fluid invasion are P-complete. 

We close this section with a brief overview of previous research 
connecting statistical physics and computational complexity. Substantial 
progress has been made in understanding the computational complexity 
of various problems in classical equilibrium statistical mechanics. (~'8) 
Computing the partition function of the Ising model on a general graph is 
#P-complete (the enumeration counterpart of NP-complete(9)), which 
strongly suggests that it cannot be done in polynomial time. On the other 
hand, provably good polynomial time approximations can be obtained 
using Monte Carlo methods. (7~ Finding the ground-state energies for spin 
glasses in more than two dimensions (1~ and for self-avoiding walks on 
random lattices in more than one dimension (1I) are NP-complete problems. 
On the other hand, the ground-state energy of the directed self-avoiding 
walk ~12~ and the random-field Ising model (~3) are polynomial time 
problems. The present paper is the first to consider nonequilibrium pattern 
formation problems from the standpoint of computational complexity. 

Cellular automata models have been extensively studied from the 
standpoint of simulating physical systems in parallel. (14~ Because they are 
spatially extended and locally connected, cellular automata are attractive 
models of computation from the standpoint of statistical physics and have 
been proposed as the proper context for defining physical complexity as 
logical depth. (3) Some cellular automata rules (e.g., the game of life) can 
carry out universal computations, which implies that simulating these 
cellular automata are P-complete problems. (6~ Cellular automata of fixed 
dimensionality are weaker than the idealized parallel computers, called 
P-RAMs, invoked in parallel complexity theory. Any problem which 
involves the interaction of M data bits will require time O ( M  TM) on a 

d-dimensional cellular automaton because of the time taken to propagate 
information across the system, whereas many such problems can be solved 
in polylog time on a P-RAM. On the other hand, the conventional defini- 
tion of "time" for P-RAMs is unphysical because no allowance is made for 
the time required for signals to propagate between processors and memory 
locations. 

The paper is organized as follows. Section 2 is an introduction to the 
theory of parallel computational complexity and P-completeness. The fluid 
invasion model is defined in Section 3, and in Section 4 a decision problem 
based on this model is proved to be P-complete. In Section 5 and an 
accompanying appendix, a restricted version of the model isomorphic to 
DLA is shown to be P-complete. The paper closes with a discussion. 
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2. INTRODUCTION TO THE THEORY OF PARALLEL 
COM PUTATIONAL COM PLEXITY 

In the theory of parallel computational complexity (4-6) there are two 
main classes of decision problems: P and NC. Informal descriptions of 
these classes are provided in what follows. P is the class of problems that 
can be solved in polynomial time on a sequential computer such as a 
Turing machine or random access machine (RAM). NC is the subset of P 
consisting of problems solvable in polylog time on a parallel computer with 
a number of processors that grows as a polynomial in the problem size. 
The restriction to a polynomial number of processors is required since any 
problem can be solved in polylog time given exponentially many 
processors. In any case, exponentially many processors is infeasible except 
for very small problem sizes. 

P-complete problems are those problems in P which are hardest to 
solve in parallel. The notion of P-completeness is formalized by considering 
reductions from one problem to another. Roughly speaking, problem R is 
NC-reducible to problem S, written R ~< S, if there exists a parallel algo- 
rithm for R which is allowed to look up solutions to S and solves R in 
polylog time with polynomially many processors. Thus, if S e NC and 
R ~< S, then R e NC. A problem S is P-complete if S ~ P and if for all R ~ P, 
R <~ S. Note that if any P-complete problem is in NC, then P = NC. 

The identification of a first P-complete problem requires proving that 
a reduction exists from every problem in P to the given problem. Once a 
collection of P-complete problems is available, an additional problem R 
can be shown to be P-complete by the simpler procedure of proving that 
S ~< R where S is already known to be P-complete. 

The canonical P-complete problem is the CIRCUIT VALUE 
PROBLEM (CVP). The problem is to compute the truth value of a 
Boolean expression on a given set of inputs. A topologically ordered 
Boolean circuit of size M is a sequence, B = (B~ ..... BM). For each i, Bi is 
either TRUE, FALSE, or a Boolean statement of the form B;--- (Bi~ v Bi2 ), 
B~=(B~ ^ Bi:), or Bi= ~Bg~, where i~,i2<i. An instance of CVP is a 
topologically ordered Boolean circuit. The solution of CVP is the truth 
value of BM. Ladner showed that CVP is P-complete3 4" 15) The proofs 
presented in Sections 4 and 5 consist of reductions from variants of CVP 
to the fluid invasion problem. 

All P-complete problems are equally difficult in the sense that if one 
could be solved in polylog time, then all problems in P could be solved in 
potytog time and P would equal NC. It is strongly believed, however, that 
NC #P ,  which implies that no P-complete problem can be solved in 
polylog time with polynomially many processors. At present, there is no 
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proof that NC r P and the strongest evidence in favor of this conjecture is 
the absence of a fast parallel algorithm for any P-complete problem. The 
P-completeness results obtained here for fluid invasion and DLA are 
thus strongly suggestive that these pattern formation processes require 
polynomial time on any parallel computer. 

The situation is analogous to the more familiar theory of NP- 
completeness. (9) NP-complete problems are the hardest problems in NP 
and are widely believed to require exponential time to solve. If NP ~ P, 
then no NP-complete problem can be solved in polynomial time. Although 
there is strong evidence to suggest that NP :/: P, no proof has been found. 
Settling either of the conjectures, P ~ NC or P ~ NP, would constitute a 
major breakthrough in computer science, but is likely to be exceedingly 
difficult. 

In this paragraph several technical issues are briefly discussed. First, 
there are a variety of models of parallel computation. The idealized model 
envisioned in the theory of P-completeness has many processors working 
synchronously, each connected to a central controller and a shared random 
access memory. This is the P-RAM model of computation. In defining time 
on a P-RAM it is supposed that memory access can be accomplished in a 
number of clock cycles that is independent of the number of processors or 
memory locations. Variants of the model which resolve read and write 
conflicts between processors in different ways (4~ are not relevant to defining 
NC and P-completeness. Second, the notion of reducibility can be 
defined (5~ in a variety of ways and NC-reducibility is often replaced by the 
notion of log-space reducibility. Again, these distinctions are not central to 
the present discussion. Finally, complexity classes are defined for decision 
problems, e.g., problems that have yes or no answers. Our interest is to find 
the patterns formed by growth models, but this task can be posed as N 
decision problems corresponding to whether the N sites of the lattice are 
occupied or not by the invading fluid or DLA cluster. If the decision 
problem for an arbitrary site could be shown to be in NC, the whole 
pattern could be obtained in polylog time by increasing the number of 
processors by a factor of N and solving the decision problems for all lattice 
sites in parallel. 

3. T H E  FLUID  I N V A S I O N  M O D E L  

The general growth model considered here is abstracted from the 
physics of fluid invasion in porous materials in the limit of large flow 
speed where surface tension can be neglected. The physical setting is a 
porous material filled with a viscous fluid such as oil. A much less viscous 
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fluid such as air is injected into the system at a source and pushes the 
more viscous fluid out of the porous material through a sink until a path 
of the invading fluid connects the source and sink. If there is little or no 
randomness in the porous material, then the invading fluid develops 
viscous fingers. If the randomness is stronger, fractal patterns resembling 
DLA clusters develop. (16) As a first step in understanding this problem 
from the point of view of computational complexity, we consider a more 
general situation where the fluid flows on an arbitrary graph. Following 
Chan et aL, O7) we lump the local permeabilities of the material into edge 
conductances and the local porosities into vertex capacities. 

Consider then the following general pattern formation problem, which 
we call FLUID INVASION: 

INSTANCE. A graph G(V, E). Nonnegative real "conductances" K o 
are assigned to each edge {i, j} s E and nonnegative real "capacities" ~i are 
assigned to each vertex i s V. There are two distinguished vertices s and s' 
which serve as a source and sink, respectively. 

PROBLEM. Find the set of vertices C* filled by the invading fluid 
according to the fluid invasion model, defined as follows(18): 

As a function of time t, the volume of viscous fluid at each vertex is 
ai(t) and the pressure at each vertex is pi(t). At every time the set of 
vertices is divided into three disjoint subsets, 

C( t )=  {ie V] ~z,(t) =0} 

3C(t)= {is V] i r  and 3 jeC( t )  { i , j } 6 E }  

F(t) = V -  C(t) - OC(t) 

(1) 

C(t) is the cluster of pores already completely filled with the invading fluid 
at time t. OC(t) is the perimeter, consisting of sites which still contain the 
viscous fluid but which are adjacent to pores filled with the invading fluid. 
F(t) is the collection of pores still completely filled with viscous fluid and 
not adjacent to a member of the cluster. The pressure in the invading fluid 
is unity and the pressure is zero at the sink. The pressure in the viscous 
fluid satisfies a discrete, inhomogeneous Laplace equation, 

iE C(t) u OC(t) -~ p~(t) = 1 

p,,(t) =0  

i~ F(t) --* P~(t)= ~ P J ( t ) K ~  Kj~ 

(2) 



The Computational Complexity of Pattern Formation 955 

The evolution of the fluid configuration is governed by Darcy's law, 

(r i (t) = - ~ K o. [p;(t) - p j ( t ) ]  (3) 
J 

with initial condition that the cluster is the source vertex and every other 
vertex is filled with the viscous fluid, 

C(0)= {s} and for all i c E - { s } ,  a;(0)=q~i (4) 

The cluster grows until there is a path from s to s', i.e., s ' s  0C. The 
completed cluster is denoted as C*. The growth of the cluster can be 
simulated by an iterative algorithm with discrete time steps: 

FLUID INVASION ALGORITHM. Suppose that some vertex i, 
has just joined the cluster at time t, [i.e., crio(t,)=0 but ~io(t)> 0 for 
t < t,]. The pressures are computed at each vertex in F ( t , )  by solving the 
set of linear equations (2). The emptying rate ~';(t,) of each perimeter 
vertex is obtained from (3) and at time t ,+l  the next vertex i,+ ~ joins the 
cluster, where t,+1 and i,+~ are obtained from 

t , + l = t , +  min {~ri(t ,) /(r~(t ,)} (5) 
i ~ OC(tn) 

The remaining perimeter site capacities are updated using (3) and the 
neighbors of i,+1 are added to the perimeter. The procedure is initialized 
by Eq. (4) and is iterated until s '~ OC. 

The fluid invasion model can also be interpreted as an electrical 
breakdown model. In this picture, the graph is an electrical network and 
K o. represent bond conductances before breakdown. A perimeter site j 
breaks down when the net charge flowing into it directly from the cluster 
exceeds ~bj. After breaking down, the conductances to adjacent sites in the 
cluster become infinite. 

4. C O M P U T A T I O N A L  COMPLEXITY OF FLUID INVASION 

In this section we show that the FLUID INVASION is P-complete by 
exhibiting a reduction from the CIRCUIT VALUE PROBLEM. It is 
straightforward to see that CVP is P-complete when the only gate type 
allowed is NOR, Bi = "~ (B; l v B/2), and the circuit is topologically ordered. 
This version of CVP is called NOR CVP and is used in the following proof. 

Theorem 1. FLUID INVASION is P-complete. 

Proo f .  It is clear that FLUID INVASION is in P. The steps in the 
fluid invasion algorithm must be iterated at most N times, where N is the 



956 Machta 

size of the graph. At each iteration the most complex step is the inversion 
of an N x N matrix to compute the pressure field according to (2). 

NOR CVP is reduced to FLUID INVASION by the following con- 
struction. The idea is to show that an evaluation of a Boolean expression 
can be simulated by the growing cluster of a specially prepared instance of 
FLUID INVASION. Each NOR gate Bk is represented by a linear path 
from s to s' consisting of four vertices and five edges as shown in Fig. 1. 
The vertex y(k) adjacent to s represents the output of gate k. The vertices 
a(k) and b(k) function as time delays. The third vertex x(k) represents the 
conjunction of the inputs of gate k. The connections between gates are 
represented by edges. The input TRUE is represented by an edge from s to 
the input vertex x(k), while the absence of such an edge represents FALSE. 
The output vertex of the last gate y(M) is connected directly to the sink s'. 
An instance of NOR CVP and its equivalent FLUID INVASION graph 
are shown in Fig. 2. Each output vertex is assigned a capacity equal to the 
number of the gate it represents, Cy(k)= k. All input vertices are assigned 
small capacities, Cx(k)= 1/MS. All of the time delay vertices are assigned 
large capacities, ffa(k)= ~b(k)-----M2. The five edges within a gate each has 
conductance four, e.g., K~,a(k)= 4. The edges which connect gates to one 
another and to the source and sink are assigned a small conductance, 
1/M 3. 

The following lemma shows how the pattern formed by the above 
network simulates the instance of NOR CVP. 

S' 

y(k) 

) x(k) 

p a(k), 

S 

Fig. 1. The subgraph representing NOR gate k. Here x(k) (open circle) is the input vertex 
and y(k) the output vertex, a(k) and b(k) serve as time delays. Each edge along the path from 
s to s' has conductance 4. 
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(a) B I = F  

B2= F 

B3= T - - ~  

B4=F 

(b) 

B 5 

Fig. 2. (a) A Boolean circuit with four inputs and three NOR gates. (b) The corresponding 
FLUID INVASION graph. The bold lines represent edges with large conductance and the 
light curved lines represent small-conductance edges which represent connections between the 
gates. The inputs of vertices Bs, B~, and t77 a r e  represented by open circles and have small 
capacities. 

L e m m a .  y(k) ~ C* if and only if Bk = TRUE. 

Proof. Consider a given gate k. Since y(k) is initially part of the 
perimeter 3C, it begins to empty. While the input x(k) is not part of C or 
3C, then the mos t important flow path by which y(k) empties is the linear 
path through gate k that has a total conductance of one. Thus 
5y(k~=- 1--O(1/M), where the small correction is due to the parallel 
paths from y(k) to the sink through other gates. Thus if the input x(k) does 
not join the cluster first, then y(k) will join C at time approximately k. On 
the other hand, suppose that x(k) joins the cluster before time k. Then the 

822/70/3-4-29 
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path by which y(k) empties is via the low-conductance connections to gates 
with higher indices. Since there are less than M of these, the rate at which 
y(k) empties is now O(1/M2). Thus y(k) cannot empty before a time M 2 
which is always longer than the time for the cluster to reach completion, 
so that y(k) ~ C*. 

To summarize, if x(k) is in the cluster, then y(k) will not join the 
cluster, but if x(k) has not joined the cluster before time k, then y(k) will 
join the duster approximately at time k. The gate carries out the Boolean 
function of negation if y(k) ~ C* is interpreted as TRUE. 

Next consider the effect of the state of gate k on gate m, where k and 
m are connected and m > k. First suppose that Bk has the value TRUE so 
that y(k) becomes a member of C at time k. Then the input x(m) becomes 
a perimeter vertex and, due to its small capacity, joins the cluster after a 
time less than O(1/M). Thus, if either of the inputs to gate m registers 
TRUE before time m, then x(m) joins the cluster shortly thereafter and 
y(m) r C*. On the other hand, if both inputs to gate m are FALSE, then 
x(m) is not part of the perimeter and y(m)joins the duster approximately 
at time m. By time m, gate m has computed the Boolean function NOR. 

It is easy to check that the time delay vertices a(k) and b(k) ensure 
that gate k remains in the same logical state until time O(M 2) when the 
cluster is completed. This completes the proof of the lemma. | 

Since the construction of the required graph for FLUID INVASION 
is locally defined and requires less than 4M vertices, it is easy to see that 
the reduction is in NC. | 

5. DLA IN T W O  D I M E N S I O N S  

Diffusion-limited aggregation (19> (DLA) is one of the most widely 
studied pattern formation models. In DLA the cluster grows by accretion 
starting from an initial "seed." Successive particles start at a source and 
random walk until they reach the growing duster, where they stick. A new 
particle begins its random walk as soon as the previous particle is 
incorporated into the cluster. The cluster grows until it reaches the source 
or a predetermined size. 

DLA dusters grow by stochastic dynamics on a uniform lattice, 
whereas the fluid invasion model is governed by deterministic dynamics on 
a random lattice. However, Chart eta/. (17) and Koza (18~ have shown that 
the measure associated with DLA clusters is the same as the measure 
associated with the fluid invasion model with a particular distribution for 
the quenched randomness. The fluid invasion model yields the DLA 
measure if the edge conductances are all the same and the vertex capacities 
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are independent, identically distributed random variables chosen from 
an exponential distribution. The source and sink vertices in FLUID 
INVASION correspond respectively to the seed and the source for DLA. 

Thus, in order to investigate the computational complexity of DLA we 
must consider a restricted version of FLUID INVASION in which the 
conductances are all equal. The most interesting model from a physical 
standpoint is defined on a Euclidean lattice. The restriction to a Euclidean 
lattice with equal conductances makes the proof of P-completeness 
considerably more difficult. 

Theorem 2. Let G(V, E) be an L•  two-dimensional square 
lattice together with sites s and s'. Let s be connected to all the sites on one 
face of the lattice and let s' be connected to all the sites on the opposite 
face. Let all of the bond conductances equal unity. FLUID INVASION 
with these restrictions is P-complete. 

Proof Sketch. The proof is similar to that of Theorem 1 except that 
the reduction is from a restricted version of CVP in which the circuit is 
planar and consists only of NOT and OR gates. Goldschlager (2~ proved 
this version of CVP P-complete. For the restricted problem, the circuit can 
be laid out in levels with connections only between adjacent levels. 

The simulation of the Boolean circuit is again via the sequence of sites 
added to the growing cluster. The basic ingredient out of which the circuit 
components are built is a "wire" which is a connected sequence of sites 
having very small capacities in a background of sites having very large 
capacities. An example of a single wire on a 5 • 5 lattice is shown in Fig. 3, 
with the small-capacity sites shown as open circles and the background of 
large-capacity sites shown as filled circles. In this example, the growing 
cluster quickly follows the wire from s to its termination, but then no 
growth occurs for a very long time. 

The physical mechanism which permits the simulation of Boolean 
functions is screening. This mechanism is illustrated by the simple NOT 
gate shown in Fig. 4. This gate is composed of an input wire X, an output 
wire IT, a power-in wire P, and a single site x, represented by a filled circle. 
Site x has a capacity of order unity (much larger than the wire capacities 
and much smaller than the insulator capacities). The cluster grows from the 
bottom of the diagram. The background of large-capacity, "insulating" sites 
(not shown explicitly) prevents the cluster from growing except along the 
wires. The gate is activated by the arrival of the cluster along the power-in 
wire, which is timed so that the input arrives before the gate is activated. 
Inputs and outputs are interpreted as TRUE if they are part of the 
completed cluster. 
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$q 

$ 

Fig. 3. A 5 x 5 lattice with a wire of connected very small-capacity sites (represented by open 
circles) in a background of very-large capacity sites (represented by solid circles). The cluster 
quickly grows along the wire, but then does not change for a very long time. 

Y 

X 

w 

I 
X 

Fig. 4. A simple NOT gate. Wires composed of very-small capacity sites are indicated by 
bold lines. The background of very large-capacity sites is not shown, but all wires are 
insulated from one another by these sites. X is the input wire, P the power-in wire, and Y the 
output wire. The growth of the cluster is from the bottom to the top of the page. 
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Suppose the input to a NOT gate is FALSE. In this case, when the 
cluster grows along the power-in wire P, it pauses for a time of order unity 
at x and then progresses along the output wire Y, which then registers 
TRUE. Next suppose that the input is TRUE; in this case, the cluster 
creates a "fjord" of pressure 1 sites around the site x which screen this site. 
Consider what happens when the gate is activated by the arrival of the 
cluster at x along the wire P. In order for x to join the cluster, a flux of 
order unity must flow out of x along the length of the tjord; however, 
the pressure gradient along the fjord is very small. Thus, the cluster is 
effectively terminated at x and the output wire Y registers FALSE. 

A quantitative discussion of the screening effect is given in the 
Appendix, where it is seen that the current out of x decreases exponentially 
with the length of the fjord. Thus, to construct a NOT gate which is stable 
for a time T requires a fjord whose length scales as log(T). 

The NOT gate described above is the basic building block of the 
required fluid invasion device. In order to wire together the full circuit it is 
necessary to ensure that all wires are laid out on the plane without 
crossings and that the input signals arrive prior to the power signal at 
every gate. A more elaborate NOT gate meeting these requirements is 
shown in Fig. 5a. Note that there is now an additional power-out wire P', 
which activates the next gate in the network. The sites b, c, d, and e are 
needed to control the timing of the gates. The path of the cluster growth 
in the NOT gate for inputs TRUE and FALSE are shown, respectively, in 
Figs. 5b and 5c. Note that the extra fjords to the left of the simple NOT 
circuit ensure that there is no back growth of the cluster to the output 
wire Y. 

The time delays are set up so that the input signal to the n th gate of 
level m arrives at time approximately n + m z  and the power signal arrives 
roughly at time n + mr + 6. The time delays of sites b, x, e, d, and e are 
chosen to be n, 1/2, r - 6 - n - 1/2, 3 + 1, and 1/2, respectively. The input 
arrives at time mT, the power-in at time mr + n + 6, and the power-out 
emerges at time mr + n + 6 + 1 and the output emerges at time (m + 1)r. 
Small errors in time delays will not lead to fatal errors in the computation 
of the circuit value; however, a full proof would require showing that 
computing the site capacities needed to produce the above time delays with 
sufficient accuracy could be done locally and in polylog time. A crucial 
observation here is that the current flows in a given gate are perturbed 
by the status of other gates by an amount which falls off as the inverse 
distance to other gates, so that by increasing the separation between gates 
polynomially it is possible to achieve effective independence between the 
timing in each gate. 

NOR and OR gates are easily made from the above NOT gate. 



(a) v 

I 

(b) 

p, 

c x 

FALSE 

b 

X 

TRUE 

(c) TRUE 

FALSE 

Fig. 5. (a) NOT gate. A" is the input, Y the output, P the power-in, and P' the power-out 
wires. (b) Cluster configuration after activation of the gate with TRUE input. (c) Cluster 
configuration after activation of the gate if the input is FALSE. Sites in the cluster are joined 
by bold lines in (b) and (c). 
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f .  
v v 
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Fig. 6. The large-scale layout of a Boolean circuit as a two-dimensional F L U I D  INVASION. 
problem. The bold lines indicate wires and the filled circles either OR or N O T  gates (see 
Fig. 5 for details). The power wire, shown as straight, laces back and forth between gates at 
successive levels. The connections between gates at successive levels are shown as curved wires. 

Joining two wires before they enter a NOT gate produces a NOR gate. 
Placing a simple NOT gate at the output of a NOR gate with power 
supplied by a tap from the main power wire produces an OR gate. 

The overall structure of the circuit is shown in Fig. 6. Power wires 
(shown as straight) loop back and forth transversely across each level in 
the circuit, while wires carrying truth values (shown as curved) connect 
gates on adjacent levels. TRUE inputs required in level m are obtained 
from the power wire at level m -  1. The large scale layout of the circuit is 
similar to the construction required in the proof that the lexicographically 
first ordered maximal path problem is P-complete. (21) 

We have shown that the devices required to emulate NOT and OR 
gates perform correctly. The layout of the circuit can be carried out locally 
on a lattice whose size scales as a power of the size of the original Boolean 
circuit. Thus we have exhibited an NC-reduction from the planar, layered 
CIRCUIT VALUE problem to the two-dimensional FLUID INVASION 
problem with constant conductances. | 
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6. D ISCUSSION.  

What is the meaning of the result that FLUID INVASION and 
DLA are P-complete? Suppose, as is widely believed, that NC :~ P; then 
Theorems 1 and 2 imply the existence of instances of FLUID INVASION 
which cannot be solved by any parallel computer in polylog time using a 
polynomial number of processors. Nonetheless, it is possible that some or 
even most instances could be solved in fast parallel time. Thus it is also 
important to characterize the typical or average parallel time to solve a 
problem. This kind of question can be posed in a natural way within 
statistical physics since problem instances are equipped with measures. For 
example, it would be interesting to determine the average case complexity 
of FLUID INVASION equipped with the DLA measure (i.e., the site 
capacities are independent, identically distributed variables chosen from an 
exponential distribution). While a theory of average case complexity for 
NP problems is reasonably well developed, ~22'23) an equivalent theory of 
average case parallel complexity is not yet available. 

This paper represents a first effort to bring to bear the theory of com- 
putational complexity to problems in nonequilibrium statistical physics. 
Understanding the computational complexity of problems in statistical 
physics has practical significance for numerical simulations and may also 
yield fundamental insights into the nature of complex physical systems. 

A P P E N D I X  

In this appendix we show that the current flowing out of a site at the 
end of a fjord diminishes exponentially in the length of the fjord. The 
equivalent circuit modeling a fjord of length N is shown in Fig. 7. All 
resistors have the value unity. In order to analyze this circuit, let x s be the 
voltage at site j in the fiord. The node voltage equations (2) take the form 

x j = ( 2  + x j _ l  + x j+l ) /4  (A.1) 

with boundary conditions x0 = I and XN = O. The general solution to (A.1) 
is 

xj  = ae +;j + be-hi  + c (A.2) 

Plugging this solution into (A.1) and equating terms which behave as e -zj 
and e +;J yields c =  1 and 2 = c o s h - 1 ( 2 ) =  1.317. Invoking the boundary 
conditions, one obtains the specific solution 

sinh(2j) 
x j=  1 sinh(2N) (A.3) 
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Fig. 7. Equivalent circuit representing a t~ord of depth N. All resistors have unit value and 
the voltage drop across the battery is unity. 

Thus, the current J flowing out of site 0 is, from (3), 

sinh(2) 
J -  sinh(2N) 

which behaves as J , , ~ e  -;'N for large N. 

(A.4) 

A C K N O W L E D G  M ENTS 

I am grateful to Ray Greenlaw for helpful discussions and numerous 
useful comments on the manuscript. I thank David Barrington, Neil 
Immerman, and Charles Bennett for helpful discussions. This work was 
supported in part  by NSF grant D M R  9014366. 



966 Machta 

R E F E R E N C E S  

1. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989). 
2. J. Apostolakis, P. Coddington, and E. Marinari, Europhys. Lett. 17:189 (1992); R. C. 

Brower, P. Tamayo, and B. York, J. Stat. Phys. 63:73 (1991). 
3. C. H. Bennett, in Complexity, Entropy, and the Physics oflnformation, Wojciech H. Zurek, 

ed. (Addison-Wesley, 1990). 
4. A. Gibbons and W. Rytter, Efficient Parallel Algorilhms (Cambridge University Press, 

Cambridge, 1988). 
5. S. A. Cook, Information Control 64:2 (1985). 
6. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, A Compendium of Problems Complete for 

P, Department of Computer Science, University of New Hampshire, Technical Report TR 
91-14 (1991). 

7. M. Jerrum and A. Sinclair, SlAM J. Computing, to appear. 
8. R. Ladner, SIGACT News 7:18 (1975). 
9. M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman, San Francisco, 

1979). 
10. F. Barahona, J'. Phys. A: Math. Gen. 15:3241 (1982). 
11. J. Machta, J. Phys. A: Math. Gen. 25:521 (1992). 
12. D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54:2708 (1985). 
13. F. Barahona, J. Phys. A: Math. Gen. 18:L673 (1985). 
14. S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore, 

1986). 
15. D. J. A. Welsh, in Disorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds. 

(Oxford University Press, Oxford, 1990). 
16. J.-D. Chen and D. Wilkinson, Phys. Rev. Lett. 55:1892 (1985). 
17. D. Y. C. Chan, B. D. Hughes, L. Paterson, and C. Sirakoff, Phys. Rev. A 38:4106 (1988). 
18. Z. Koza, J. Phys. A: Math. Gen. 24:4895 (1991). 
19. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47:1400 (1981). 
20. L. Goldschlager, SIGACT News 9:25 (1977). 
21. R. Anderson and E. Mayr, Information Process. Lett. 24:121 (1987). 
22. L. A. Levin, SlAM ,I. Comput. 15:285 (1986). 
23. Y. Gurevich, J'. Computer Syst. Sci. 42:346 (1991), and references therein. 


